3.2048 \(\int \frac {(a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}}{\sqrt {d+e x}} \, dx\)

Optimal. Leaf size=171 \[ \frac {16 \left (c d^2-a e^2\right )^2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{7/2}}{693 c^3 d^3 (d+e x)^{7/2}}+\frac {8 \left (c d^2-a e^2\right ) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{7/2}}{99 c^2 d^2 (d+e x)^{5/2}}+\frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{7/2}}{11 c d (d+e x)^{3/2}} \]

[Out]

16/693*(-a*e^2+c*d^2)^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(7/2)/c^3/d^3/(e*x+d)^(7/2)+8/99*(-a*e^2+c*d^2)*(a*d
*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(7/2)/c^2/d^2/(e*x+d)^(5/2)+2/11*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(7/2)/c/d/(e*
x+d)^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 171, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.051, Rules used = {656, 648} \[ \frac {8 \left (c d^2-a e^2\right ) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{7/2}}{99 c^2 d^2 (d+e x)^{5/2}}+\frac {16 \left (c d^2-a e^2\right )^2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{7/2}}{693 c^3 d^3 (d+e x)^{7/2}}+\frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{7/2}}{11 c d (d+e x)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/Sqrt[d + e*x],x]

[Out]

(16*(c*d^2 - a*e^2)^2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(7/2))/(693*c^3*d^3*(d + e*x)^(7/2)) + (8*(c*d^2
 - a*e^2)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(7/2))/(99*c^2*d^2*(d + e*x)^(5/2)) + (2*(a*d*e + (c*d^2 + a
*e^2)*x + c*d*e*x^2)^(7/2))/(11*c*d*(d + e*x)^(3/2))

Rule 648

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)
*(a + b*x + c*x^2)^(p + 1))/(c*(p + 1)), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c
*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0]

Rule 656

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)
*(a + b*x + c*x^2)^(p + 1))/(c*(m + 2*p + 1)), x] + Dist[(Simplify[m + p]*(2*c*d - b*e))/(c*(m + 2*p + 1)), In
t[(d + e*x)^(m - 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && E
qQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && IGtQ[Simplify[m + p], 0]

Rubi steps

\begin {align*} \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{\sqrt {d+e x}} \, dx &=\frac {2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{7/2}}{11 c d (d+e x)^{3/2}}+\frac {\left (4 \left (d^2-\frac {a e^2}{c}\right )\right ) \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{3/2}} \, dx}{11 d}\\ &=\frac {8 \left (c d^2-a e^2\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{7/2}}{99 c^2 d^2 (d+e x)^{5/2}}+\frac {2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{7/2}}{11 c d (d+e x)^{3/2}}+\frac {\left (8 \left (d^2-\frac {a e^2}{c}\right )^2\right ) \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2}} \, dx}{99 d^2}\\ &=\frac {16 \left (c d^2-a e^2\right )^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{7/2}}{693 c^3 d^3 (d+e x)^{7/2}}+\frac {8 \left (c d^2-a e^2\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{7/2}}{99 c^2 d^2 (d+e x)^{5/2}}+\frac {2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{7/2}}{11 c d (d+e x)^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.08, size = 98, normalized size = 0.57 \[ \frac {2 (a e+c d x)^3 \sqrt {(d+e x) (a e+c d x)} \left (8 a^2 e^4-4 a c d e^2 (11 d+7 e x)+c^2 d^2 \left (99 d^2+154 d e x+63 e^2 x^2\right )\right )}{693 c^3 d^3 \sqrt {d+e x}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/Sqrt[d + e*x],x]

[Out]

(2*(a*e + c*d*x)^3*Sqrt[(a*e + c*d*x)*(d + e*x)]*(8*a^2*e^4 - 4*a*c*d*e^2*(11*d + 7*e*x) + c^2*d^2*(99*d^2 + 1
54*d*e*x + 63*e^2*x^2)))/(693*c^3*d^3*Sqrt[d + e*x])

________________________________________________________________________________________

fricas [A]  time = 0.93, size = 254, normalized size = 1.49 \[ \frac {2 \, {\left (63 \, c^{5} d^{5} e^{2} x^{5} + 99 \, a^{3} c^{2} d^{4} e^{3} - 44 \, a^{4} c d^{2} e^{5} + 8 \, a^{5} e^{7} + 7 \, {\left (22 \, c^{5} d^{6} e + 23 \, a c^{4} d^{4} e^{3}\right )} x^{4} + {\left (99 \, c^{5} d^{7} + 418 \, a c^{4} d^{5} e^{2} + 113 \, a^{2} c^{3} d^{3} e^{4}\right )} x^{3} + 3 \, {\left (99 \, a c^{4} d^{6} e + 110 \, a^{2} c^{3} d^{4} e^{3} + a^{3} c^{2} d^{2} e^{5}\right )} x^{2} + {\left (297 \, a^{2} c^{3} d^{5} e^{2} + 22 \, a^{3} c^{2} d^{3} e^{4} - 4 \, a^{4} c d e^{6}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}}{693 \, {\left (c^{3} d^{3} e x + c^{3} d^{4}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(1/2),x, algorithm="fricas")

[Out]

2/693*(63*c^5*d^5*e^2*x^5 + 99*a^3*c^2*d^4*e^3 - 44*a^4*c*d^2*e^5 + 8*a^5*e^7 + 7*(22*c^5*d^6*e + 23*a*c^4*d^4
*e^3)*x^4 + (99*c^5*d^7 + 418*a*c^4*d^5*e^2 + 113*a^2*c^3*d^3*e^4)*x^3 + 3*(99*a*c^4*d^6*e + 110*a^2*c^3*d^4*e
^3 + a^3*c^2*d^2*e^5)*x^2 + (297*a^2*c^3*d^5*e^2 + 22*a^3*c^2*d^3*e^4 - 4*a^4*c*d*e^6)*x)*sqrt(c*d*e*x^2 + a*d
*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)/(c^3*d^3*e*x + c^3*d^4)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {5}{2}}}{\sqrt {e x + d}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(1/2),x, algorithm="giac")

[Out]

integrate((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(5/2)/sqrt(e*x + d), x)

________________________________________________________________________________________

maple [A]  time = 0.05, size = 110, normalized size = 0.64 \[ \frac {2 \left (c d x +a e \right ) \left (63 c^{2} d^{2} e^{2} x^{2}-28 a c d \,e^{3} x +154 c^{2} d^{3} e x +8 a^{2} e^{4}-44 a c \,d^{2} e^{2}+99 c^{2} d^{4}\right ) \left (c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e \right )^{\frac {5}{2}}}{693 \left (e x +d \right )^{\frac {5}{2}} c^{3} d^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(5/2)/(e*x+d)^(1/2),x)

[Out]

2/693*(c*d*x+a*e)*(63*c^2*d^2*e^2*x^2-28*a*c*d*e^3*x+154*c^2*d^3*e*x+8*a^2*e^4-44*a*c*d^2*e^2+99*c^2*d^4)*(c*d
*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(5/2)/c^3/d^3/(e*x+d)^(5/2)

________________________________________________________________________________________

maxima [A]  time = 1.30, size = 217, normalized size = 1.27 \[ \frac {2 \, {\left (63 \, c^{5} d^{5} e^{2} x^{5} + 99 \, a^{3} c^{2} d^{4} e^{3} - 44 \, a^{4} c d^{2} e^{5} + 8 \, a^{5} e^{7} + 7 \, {\left (22 \, c^{5} d^{6} e + 23 \, a c^{4} d^{4} e^{3}\right )} x^{4} + {\left (99 \, c^{5} d^{7} + 418 \, a c^{4} d^{5} e^{2} + 113 \, a^{2} c^{3} d^{3} e^{4}\right )} x^{3} + 3 \, {\left (99 \, a c^{4} d^{6} e + 110 \, a^{2} c^{3} d^{4} e^{3} + a^{3} c^{2} d^{2} e^{5}\right )} x^{2} + {\left (297 \, a^{2} c^{3} d^{5} e^{2} + 22 \, a^{3} c^{2} d^{3} e^{4} - 4 \, a^{4} c d e^{6}\right )} x\right )} \sqrt {c d x + a e}}{693 \, c^{3} d^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(1/2),x, algorithm="maxima")

[Out]

2/693*(63*c^5*d^5*e^2*x^5 + 99*a^3*c^2*d^4*e^3 - 44*a^4*c*d^2*e^5 + 8*a^5*e^7 + 7*(22*c^5*d^6*e + 23*a*c^4*d^4
*e^3)*x^4 + (99*c^5*d^7 + 418*a*c^4*d^5*e^2 + 113*a^2*c^3*d^3*e^4)*x^3 + 3*(99*a*c^4*d^6*e + 110*a^2*c^3*d^4*e
^3 + a^3*c^2*d^2*e^5)*x^2 + (297*a^2*c^3*d^5*e^2 + 22*a^3*c^2*d^3*e^4 - 4*a^4*c*d*e^6)*x)*sqrt(c*d*x + a*e)/(c
^3*d^3)

________________________________________________________________________________________

mupad [B]  time = 1.20, size = 241, normalized size = 1.41 \[ \frac {\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}\,\left (\frac {16\,a^5\,e^7-88\,a^4\,c\,d^2\,e^5+198\,a^3\,c^2\,d^4\,e^3}{693\,c^3\,d^3}+\frac {x^3\,\left (226\,a^2\,c^3\,d^3\,e^4+836\,a\,c^4\,d^5\,e^2+198\,c^5\,d^7\right )}{693\,c^3\,d^3}+\frac {2\,c^2\,d^2\,e^2\,x^5}{11}+\frac {2\,c\,d\,e\,x^4\,\left (22\,c\,d^2+23\,a\,e^2\right )}{99}+\frac {2\,a\,e\,x^2\,\left (a^2\,e^4+110\,a\,c\,d^2\,e^2+99\,c^2\,d^4\right )}{231\,c\,d}+\frac {2\,a^2\,e^2\,x\,\left (-4\,a^2\,e^4+22\,a\,c\,d^2\,e^2+297\,c^2\,d^4\right )}{693\,c^2\,d^2}\right )}{\sqrt {d+e\,x}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2)/(d + e*x)^(1/2),x)

[Out]

((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)*((16*a^5*e^7 - 88*a^4*c*d^2*e^5 + 198*a^3*c^2*d^4*e^3)/(693*c^3
*d^3) + (x^3*(198*c^5*d^7 + 836*a*c^4*d^5*e^2 + 226*a^2*c^3*d^3*e^4))/(693*c^3*d^3) + (2*c^2*d^2*e^2*x^5)/11 +
 (2*c*d*e*x^4*(23*a*e^2 + 22*c*d^2))/99 + (2*a*e*x^2*(a^2*e^4 + 99*c^2*d^4 + 110*a*c*d^2*e^2))/(231*c*d) + (2*
a^2*e^2*x*(297*c^2*d^4 - 4*a^2*e^4 + 22*a*c*d^2*e^2))/(693*c^2*d^2)))/(d + e*x)^(1/2)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2)/(e*x+d)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________